- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(1)求抛物线G的方程;
(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(3)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.
(1)求抛物线G的方程;
(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(3)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

已知定点
,定直线
的方程为
,点
是
上的动点,过点
与直线
垂直的直线与线段
的中垂线相交于点
,设点
的轨迹为曲线
.
(1)求曲线
的方程:
(2)点
,点
,过点
作直线
与曲线
相交于
、
两点,求证:
.











(1)求曲线

(2)点








已知在平面直角坐标系
中,抛物线
的准线方程是
.
(1)求抛物线的方程;
(2)设直线
与抛物线相交于
两点,
为坐标原点,证明:以
为直径的圆过原点.



(1)求抛物线的方程;
(2)设直线




已知抛物线
的顶点在原点,焦点在
轴上,抛物线
上一点
到其焦点的距离为6.
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)若抛物线
与直线
相交于不同的两点
、
,且线段
中点的横坐标为2,求实数
的值.




(Ⅰ)求抛物线

(Ⅱ)若抛物线






已知抛物线
的焦点为
,点
在抛物线上,且点
的横坐标为4,
.
(1)求抛物线C的方程;
(2)过焦点
作两条互相垂直的直线
,直线
与
交于
两点,直线
与
交于
两点,则求
的最小值.





(1)求抛物线C的方程;
(2)过焦点









已知动圆
过点
且与直线
相切,圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
,
是曲线
上的两个点且直线
过
的外心,其中
为坐标原点,求证:直线
过定点.





(1)求曲线

(2)若






