- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线的顶点在坐标原点,焦点在
轴上,抛物线上一点
到焦点F的距离为5.则该抛物线的标准方程为__________________.


已知抛物线C的顶点为坐标原点O,对称轴为x轴,其准线过点
.
(1)求抛物线C的方程;
(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为
,求直线l的方程.

(1)求抛物线C的方程;
(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为

设抛物线C:
的焦点为F,经过点F的动直线
交抛物线C于
两点,且
(1)求抛物线C的方程;
(2)若点M是抛物线C的准线上的一点,直线MF、MA、MB的斜率分别为
求证:当
时,
为定值.




(1)求抛物线C的方程;
(2)若点M是抛物线C的准线上的一点,直线MF、MA、MB的斜率分别为



给定直线m:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
已知抛物线y2=2px的焦点为F,准线方程是x=﹣1.
(I)求此抛物线的方程;
(Ⅱ)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.
(I)求此抛物线的方程;
(Ⅱ)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.
过抛物线
的焦点
的直线
与抛物线在第一象限的交点为
,直线
与抛物线的准线的交点为
,点
在抛物线在准线上的射影为
,若
,
,则抛物线的方程为( )










A.![]() | B.![]() | C.![]() | D.![]() |