刷题宝
  • 刷题首页
题库 高中数学

题干

给定直线m:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
上一题 下一题 0.99难度 解答题 更新时间:2020-03-01 02:10:35

答案(点此获取答案解析)

同类题1

若抛物线的焦点坐标为,则(   )
A.12B.6C.3D.

同类题2

若抛物线的焦点在直线上,则____.

同类题3

点 M是抛物线C:y2=2px(p>0)上一点,F是抛物线焦点,=60°,|FM|=4.
(1)求抛物线C方程;
(2)D(﹣1,0),过F的直线l交抛物线C与A、B两点,以F为圆心的圆F与直线AD相切,试判断并证明圆F与直线BD的位置关系.

同类题4

双曲线的离心率为,抛物线C:x2=2py(p>0)的焦点在双曲线的顶点上.
(1)求抛物线C的方程;
(2)过M(-1,0)的直线l与抛物线C交于E,F两点,又过E,F作抛物线C的切线l1,l2,当l1⊥l2时,求直线l的方程.

同类题5

已知抛物线的准线为与圆相交所得弦长为,则___.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 抛物线
  • 抛物线标准方程的求法
  • 根据焦点或准线写出抛物线的标准方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)