- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,求该抛物线的方程及其准线方程.
已知抛物线
,过抛物线
的焦点的直线
与抛物线
相交于
,
两点,线段
的长度为8,且
的中点到
轴的距离为3.
(1)求抛物线
的方程;
(2)已知抛物线
与直线
交于
,
两点,判断坐标原点
是否在以
为直径的圆上,并说明理由.









(1)求抛物线

(2)已知抛物线






已知抛物线
上一点
到焦点
的距离等于
.
(I)求抛物线
的方程和实数
的值;
(II)若过
的直线交抛物线
于不同两点
,
(均与
不重合),直线
,
分别交抛物线的准线
于点
,
.试判断以
为直径的圆是否过点
,并说明理由.




(I)求抛物线


(II)若过












抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线
,如图,一平行
轴的光线射向抛物线上的点
,经过抛物线的焦点
反射后射向抛物线上的点
,再反射后又沿平行
轴方向射出,若两平行光线间的最小距离为6,则此抛物线的方程为_______.







已知
,抛物线
与抛物线
异于原点
的交点为
,且抛物线
在点
处的切线与
轴交于点
,抛物线
在点
处的切线与
轴交于点
,与
轴交于点
.
(1)若直线
与抛物线
交于点
,且
,求抛物线
的方程;
(2)证明:
的面积与四边形
的面积之比为定值.















(1)若直线





(2)证明:


已知抛物线C:y2=2px(p>0)的焦点F为圆x2+y2-2x=0的圆心.
(1)求抛物线C的标准方程;
(2)若斜率k=1的直线l过抛物线的焦点F与抛物线相交于AB两点,求弦长|AB|.
(1)求抛物线C的标准方程;
(2)若斜率k=1的直线l过抛物线的焦点F与抛物线相交于AB两点,求弦长|AB|.