刷题首页
题库
高中数学
题干
如图,已知抛物线
的顶点在坐标原点,焦点在
轴上,且过点
,圆
,过圆心
的直线
与抛物线和圆分别交于
,则
的最小值为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-05-01 09:42:15
答案(点此获取答案解析)
同类题1
如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形
的形状,使得
都落在抛物线上,点
关于抛物线的轴对称,且
,抛物线的顶点到底边的距离是
,记
,梯形面积为
.
(1)以抛物线的顶点为坐标原点,其对称轴为
轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;
(2)求面积
关于
的函数解析式,并写出其定义域;
(3)求面积
的最大值.
同类题2
如图,过抛物线
的焦点
作一条倾斜角为
的直线与抛物线相交于
两点.
(I)用
表示
;
(Ⅱ)若
求这个抛物线的方程
同类题3
已知抛物线
过点
.
(1)求抛物线C的方程;
(2)求过点
的直线与抛物线
交于
两个不同的点(均与点
不重合).设直线
,
的斜率分别为
,求证:
为定值.
同类题4
(题文)已知点
是抛物线
的焦点,点
是抛物线
上一点,且
,
的方程为
,过点
作直线
,与抛物线
和
依次交于
.(如图所示)
(1)求抛物线
的方程;
(2)求
的最小值.
同类题5
已知顶点在原点,焦点在
轴上的抛物线
过点
.
(1)求抛物线
的标准方程;
(2)斜率为
的直线
与抛物线
交于
、
两点,点
是线段
的中点,求直线
的方程,并求线段
的长.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据抛物线上的点求标准方程
与抛物线焦点弦有关的几何性质