刷题首页
题库
高中数学
题干
已知抛物线
上一点
到焦点
的距离等于
.
(I)求抛物线
的方程和实数
的值;
(II)若过
的直线交抛物线
于不同两点
,
(均与
不重合),直线
,
分别交抛物线的准线
于点
,
.试判断以
为直径的圆是否过点
,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-05 04:09:09
答案(点此获取答案解析)
同类题1
已知抛物线的顶点在原点,它的准线过双曲线
的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点
,求抛物线的方程和双曲线的方程.
同类题2
在直角坐标系
中,抛物线
:
与圆
:
相交于两点,且两点间的距离为
,则抛物线
的焦点到其准线的距离为______.
同类题3
已知点
在抛物线
:
上.
(1)求
的方程;
(2)过
上的任一点
(
与
的顶点不重合)作
轴于
,试求线段
中点的轨迹方程;
(3)在
上任取不同于点
的点
,直线
与直线
交于点
,过点
作
轴的垂线交抛物线
于点
,求
面积的最小值.
同类题4
已知以
为焦点的抛物线
过点
,直线
与
交于
,
两点,
为
中点,且
.
(1)当
时,求点
的坐标;
(2)当
时,求直线
的方程.
同类题5
如图,抛物线
的焦点,点为
是抛物线
上一点,且
,
的方程为
,过点
作直线
,与抛物线
和
依次交于
.(如图所示)
(1)求抛物线
的方程;
(2)求
的最小值.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据抛物线上的点求标准方程
与抛物线焦点弦有关的几何性质