- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- + 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是直线
上任意一点,过
作
,线段
的垂直平分线交
于点
.
(Ⅰ)求点
的轨迹
对应的方程;
(Ⅱ)过点
的直线
与点
的轨迹
相交于
两点,(
点在
轴上方),点
关于
轴的对称点为
,且
,求
的外接圆的方程.








(Ⅰ)求点


(Ⅱ)过点












已知动点P到定点
的距离比它到定直线
的距离小1.
(I)求动点P的轨迹C的方程;
(II)已知点Q为直线
上的动点,过点q作曲线C的两条切线,切点分别为M,N,求
的取值范围.(其中O为坐标原点)


(I)求动点P的轨迹C的方程;
(II)已知点Q为直线


已知抛物线
上横坐标为
的点
到焦点
的距离为
.
(I)求抛物线的方程;
(II)若斜率为
的直线
与抛物线
交于
两点,且点
在直线
的右上方,求证:△
的内心在直线
上;
(III)在(II)中,若
,求
的内切圆半径长.





(I)求抛物线的方程;
(II)若斜率为








(III)在(II)中,若


已知点
,过点
且与
轴垂直的直线为
,
轴,交
于点
,直线
垂直平分
,交
于点
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,直线
与曲线
交于不同两点
,且
(
为常数),直线
与
平行,且与曲线
相切,切点为
,试问
的面积是否为定值.若为定值,求出
的面积;若不是定值,说明理由.











(1)求点

(2)记点













已知定点
,定直线
,动点
到点
的距离比点
到
的距离小1.
(1)求动点P的轨迹C的方程;
(2)过点
的直线
与(1)中轨迹C相交于两个不同的点M、N,若
,求直线
的斜率的取值范围.






(1)求动点P的轨迹C的方程;
(2)过点




已知动圆过定点P(1,0),且与定直线l:x=﹣1相切.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为120°的直线与曲线M相交于A,B两点,A,B在直线l上的射影是A1,B1.
①求梯形AA1B1B的面积;
②若点C是线段A1B1上的动点,当△ABC为直角三角形时,求点C的坐标.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为120°的直线与曲线M相交于A,B两点,A,B在直线l上的射影是A1,B1.
①求梯形AA1B1B的面积;
②若点C是线段A1B1上的动点,当△ABC为直角三角形时,求点C的坐标.
在平面直角坐标系
中,圆
外的点
在
轴的右侧运动,且
到圆
上的点的最小距离等于它到
轴的距离,记
的轨迹为
.
(1)求
的方程;
(2)过点
的直线交
于
,
两点,以
为直径的圆
与平行于
轴的直线相切于点
,线段
交
于点
,证明:
的面积是
的面积的四倍.









(1)求

(2)过点












