- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- + 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若点A的坐标为(3,1),F为抛物线y2=2x的焦点,点P是抛物线上的一动点,则|PA|+|PF|取最小值时点P的坐标为( )
A.(0,0) | B.(1,1) | C.(2,2) | D.(![]() |
已知抛物线C:x2=4y,点M是抛物线C上的一个动点,则点M到点A(2,0)的距离与点M到该抛物线准线的距离之和的最小值为( )
A.1 | B.2 |
C.![]() | D.![]() |