- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- + 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆M与直线
相切,且与圆N:
外切
(1)求动圆圆心M的轨迹C的方程;
(2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为A,B,当直线
与
的斜率之积为
时,求证:直线
过定点.


(1)求动圆圆心M的轨迹C的方程;
(2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为A,B,当直线




已知动圆
与直线
相切,且与圆
外切.
(1)求动圆
圆心轨迹
的方程;
(2)若直线
:
与曲线
交于
两点,且曲线
上存在两点
关于直线
对称,求实数
的取值范围及
的取值范围.



(1)求动圆


(2)若直线









已知定点F(1,0),定直线
,动点M到点F的距离与到直线l的距离相等.
(1)求动点M的轨迹方程;
(2)设点
,过点F作一条斜率大于0的直线交轨迹M于A,B两点,分别连接PA,PB,若直线PA与直线PB不关于x轴对称,求实数t的取值范围.

(1)求动点M的轨迹方程;
(2)设点

已知曲线
上的任一点到点
的距离减去它到
轴的距离的差都是1.
(1)求曲线
的方程;
(2)设直线
与曲线
交于
,
两点,若对于任意
都有
,求
的取值范围.



(1)求曲线

(2)设直线







如图,在正方形
中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连接
,过
作
轴的垂线与
交于点
.

(1)求证:点
都在同一条抛物线上,并求抛物线
的方程;
(2)过点
作直线
与抛物线E交于不同的两点
, 若
与
的面积之比为4:1,求直线
的方程.
















(1)求证:点


(2)过点






设抛物线
的焦点为
,过
且垂直于
轴的直线与抛物线交于
两点,已知
.
(1)求抛物线
的方程;
(2)设
,过点
作方向向量为
的直线与抛物线
相交于
两点,求使
为钝角时实数
的取值范围;
(3)①对给定的定点
,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.
②对
,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?(只要求写出结论,不需用证明)






(1)求抛物线

(2)设







(3)①对给定的定点






②对






已知曲线C上任意一点M到点F(0,1)的距离比它到直线
:y=﹣2的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设
.当△AOB的面积为
时(O为坐标原点),求λ的值.

(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设


在平面直角坐标系
中,圆
外的点
在
轴的右侧运动,且
到圆
上的点的最小距离等于它到
轴的距离,记
的轨迹为
.
(1)求
的方程;
(2)过点
的直线交
于
,
两点,以
为直径的圆
与平行于
轴的直线相切于点
,线段
交
于点
,证明:
的面积是
的面积的四倍.









(1)求

(2)过点













动点
到定点
的距离之比它到直线
的距离小1,设动点
的轨迹为曲线
,过点
的直线交曲线
于
两个不同的点,过点
分别作曲线
的切线,且二者相交于点
.
(1)求曲线
的方程;
(2)求证:
;
(3)求
的面积的最小值.











(1)求曲线

(2)求证:

(3)求
