- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- + 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,点
为曲线C上的动点,过A作x轴的垂线,垂足为B,满足
.
(1)求曲线C的方程;
(2)直线l与曲线C交于两不同点P,Q(非原点),过P,Q两点分别作曲线C的切线,两切线的交点为M.设线段
的中点为N,若
,求直线l的斜率.



(1)求曲线C的方程;
(2)直线l与曲线C交于两不同点P,Q(非原点),过P,Q两点分别作曲线C的切线,两切线的交点为M.设线段


已知动点
到直线
的距离比到定点
的距离多1.
(1)求动点
的轨迹
的方程
(2)若
为(1)中曲线
上一点,过点
作直线
的垂线,垂足为
,过坐标原点
的直线
交曲线
于另外一点
,证明直线
过定点,并求出定点坐标.



(1)求动点


(2)若










已知点
到点
的距离比它到直线
距离小
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
作互相垂直的两条直线
,它们与(Ⅰ)中轨迹
分别交于点
及点
,且
分别是线段
的中点,求
面积的最小值.




(Ⅰ)求点


(Ⅱ)过点








已知圆
的方程为
,若抛物线
过点
,且以圆0的切线为准线,
为抛物线的焦点,点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作直线
交曲线
与
两点,
关于
轴对称,请问:直线
是否过
轴上的定点,如果不过请说明理由,如果过定点,请求出定点
的坐标







(1)求曲线

(2)过点









如图,在平面直角坐标系xOy中,点F
,直线l:
,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.

(1)求动点Q的轨迹C的方程;
(2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长|TS|是否为定值?请说明理由.



(1)求动点Q的轨迹C的方程;
(2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长|TS|是否为定值?请说明理由.
在平面直角坐标系
中,一动圆经过点
且与直线
相切,设该动圆圆心的轨迹方程为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)设
是曲线
上的动点,点
的横坐标为
,点
,
在
轴上,
的内切圆的方程为
,将
表示成
的函数,并求
面积的最小值.




(Ⅰ)求曲线

(Ⅱ)设












已知动圆C经过点
(0,1),并且与直线
相切,若直线
与圆C有公共点,则圆C的面积( )



A.有最大值为![]() | B.有最小值为![]() |
C.有最大值为![]() | D.有最小值为![]() |