- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- + 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在
轴右侧的动圆⊙
与⊙
:
外切,并与
轴相切.
(Ⅰ)求动圆的圆心
的轨迹
的方程;
(Ⅱ)过点
作⊙
:
的两条切线,分别交
轴于
两点,设
中点为
.求
的取值范围.





(Ⅰ)求动圆的圆心


(Ⅱ)过点









设动点
到定点
的距离比它到
轴的距离大
,记点
的轨迹为曲线
.
(1)求点
的轨迹方程;
(2)若圆心在曲线
上的动圆
过点
,试证明圆
与
轴必相交,且截
轴所得的弦长为定值.






(1)求点

(2)若圆心在曲线






已知动圆
恒过点
,且与直线
相切.
(1)求圆心
的轨迹方程;
(2)若过点
的直线交轨迹
于
,
两点,直线
,
(
为坐标原点)分别交直线
于点
,
,证明:以
为直径的圆被
轴截得的弦长为定值.



(1)求圆心

(2)若过点












已知动点
到点
的距离比它到直线
的距离小
,记动点
的轨迹为
.若以
为圆心,
为半径(
)作圆,分别交
轴于
两点,连结并延长
,分别交曲线
于
两点.
(1)求曲线
的方程;
(2)求证:直线
的斜率为定值.














(1)求曲线

(2)求证:直线

已知动点
到直线
的距离比到定点
的距离大1.
(1)求动点
的轨迹
的方程.
(2)若
为直线
上一动点,过点
作曲线
的两条切线
,
,切点为
,
,
为
的中点.
①求证:
轴;
②直线
是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.



(1)求动点


(2)若










①求证:

②直线

已知动圆
恒过点
,且与直线
:
相切.
(1)求动圆圆心
的轨迹
的方程;
(2)探究在曲线
上,是否存在异于原点的两点
,
,当
时,直线
恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.




(1)求动圆圆心


(2)探究在曲线




