- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若抛物线y=ax2(a<0)的焦点F恰是椭圆
+
=1的一个焦点,l是椭圆的相应焦点F的准线,P是抛物线上异于顶点的动点.设抛物线在P处的切线与l,y轴围成的三角形的面积为S.(1)求a的值;(T-22) (2)求S的最小值.(T-23)


(2017-2018学年湖南省长沙市第一中学高三高考模拟卷)已知抛物线
的焦点为
,准线与
轴的交点为
,点
在抛物线
上,且
,则
的面积为








A.4 | B.6 |
C.8 | D.12 |
如图,在正方形
中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连接
,过
作
轴的垂线与
交于点
.

(1)求证:点
都在同一条抛物线上,并求抛物线
的方程;
(2)过点
作直线
与抛物线E交于不同的两点
, 若
与
的面积之比为4:1,求直线
的方程.
















(1)求证:点


(2)过点






设抛物线
的焦点为
,过
且垂直于
轴的直线与抛物线交于
两点,已知
.
(1)求抛物线
的方程;
(2)设
,过点
作方向向量为
的直线与抛物线
相交于
两点,求使
为钝角时实数
的取值范围;
(3)①对给定的定点
,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.
②对
,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?(只要求写出结论,不需用证明)






(1)求抛物线

(2)设







(3)①对给定的定点






②对






已知曲线C上任意一点M到点F(0,1)的距离比它到直线
:y=﹣2的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设
.当△AOB的面积为
时(O为坐标原点),求λ的值.

(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设

