- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线
-x2=1的两条渐近线分别与抛物线y2=2px(p>0)的准线交于A,B两点.O为坐标原点.若△OAB的面积为1,则p的值为( )

A.1 | B.![]() |
C.2![]() | D.4 |
动点
到定点
的距离之比它到直线
的距离小1,设动点
的轨迹为曲线
,过点
的直线交曲线
于
两个不同的点,过点
分别作曲线
的切线,且二者相交于点
.
(1)求曲线
的方程;
(2)求证:
;
(3)求
的面积的最小值.











(1)求曲线

(2)求证:

(3)求
