- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆在运动过程中,其圆心M到点(0,1)与到直线y=-1的距离始终保持相等.
(1)求圆心M的轨迹方程;
(2)若直线
与点M的轨迹交于A、B两点,且
,求k的值.
(1)求圆心M的轨迹方程;
(2)若直线


在平面直角坐标系
中,已知点
是
轴与圆
的一个公共点(异于原点),抛物线
的准线为
,
上横坐标为
的点
到
的距离等于
.
(1)求
的方程;
(2)直线
与圆
相切且与
相交于
,
两点,若
的面积为4,求
的方程.











(1)求

(2)直线







已知抛物线
上在第一象限内的点H(1,t)到焦点F的距离为2.
(1)若
,过点M,H的直线与该抛物线相交于另一点N,求
的值;
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且
(其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与该抛物线交于G、D两点,求四边形AGBD面积的最小值.

(1)若


(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且

①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与该抛物线交于G、D两点,求四边形AGBD面积的最小值.