- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动点
到直线
的距离比到定点
的距离大1.
(1)求动点
的轨迹
的方程.
(2)若
为直线
上一动点,过点
作曲线
的两条切线
,
,切点为
,
,
为
的中点.
①求证:
轴;
②直线
是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.



(1)求动点


(2)若










①求证:

②直线

如图,在底面半径和高均为
的圆锥中,
是底面圆
的两条互相垂直的直径,
是母线
的中点.已知过
与
的平面与圆锥侧面的交线是以
为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点
的距离为()











A.![]() | B.![]() | C.![]() | D.![]() |
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(1)求抛物线G的方程;
(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(3)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.
(1)求抛物线G的方程;
(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(3)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

已知定点
,定直线
的方程为
,点
是
上的动点,过点
与直线
垂直的直线与线段
的中垂线相交于点
,设点
的轨迹为曲线
.
(1)求曲线
的方程:
(2)点
,点
,过点
作直线
与曲线
相交于
、
两点,求证:
.











(1)求曲线

(2)点







