- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点P为抛物线
上的动点,点P在y轴上的射影是B,A点坐标为(3,4).则∣PA∣+∣PB∣的最小值是( )

A.5 | B.4 | C.![]() | D.![]() |
已知抛物线
:
的焦点为
,
为抛物线上一点,且
.
(1)求抛物线
的方程;
(2)若不经过坐标原点
的直线
:
与抛物线
相交于不同的两点
、
,且满足
.证明:直线
过
轴上一定点
,并求出点
的坐标.





(1)求抛物线

(2)若不经过坐标原点











已知顶点在原点,焦点在x轴上的抛物线C经过点
.
Ⅰ
求抛物线C的标准方程;
Ⅱ
经过抛物线C的焦点且斜率为2的直线l交抛物线C于A,B两点,求线段AB的长.




