- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
记抛物线
的焦点为
,点
在抛物线上,
,斜率为
的直线
与抛物线
交于
两点.
(1)求
的最小值;
(2)若
,直线
的斜率都存在,且
;探究:直线
是否过定点,若是,求出定点坐标;若不是,请说明理由.








(1)求

(2)若




已知抛物线
(
且
为常数),F为其焦点,若焦点F是椭圆
的一个焦点.
(1)求抛物线的方程;
(2)过点F的直线与抛物线相交于P、Q两点,且
求直线PQ的方程.




(1)求抛物线的方程;
(2)过点F的直线与抛物线相交于P、Q两点,且
