- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,
为抛物线
上异于原点的任意一点,过点
的直线
交抛物线
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为3时,
(Ⅰ)求抛物线
的方程;
(Ⅱ)若直线
,且
和抛物线
有且只有一个公共点
,试问直线
(
为抛物线
上异于原点的任意一点)是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.













(Ⅰ)求抛物线

(Ⅱ)若直线







在直角坐标系
中,已知一动圆经过点
且在
轴上截得的弦长为4,设动圆圆心的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作互相垂直的两条直线
,
,
与曲线
交于
,
两点,
与曲线
交于
,
两点,线段
,
的中点分别为
,
,求证:直线
过定点
,并求出定点
的坐标.




(1)求曲线

(2)过点


















已知抛物线
关于
轴对称,且经过点
.
(1)求抛物线
的标准方程及其准线方程;
(2)设
为原点,过抛物线
的焦点
作斜率不为0的直线
交抛物线
于两点
、
,抛物线的准线分别交直线
、
于点
和点
,求证:以
为直径的圆经过
轴上的两个定点.



(1)求抛物线

(2)设













已知抛物线
上一点
到焦点F的距离
,倾斜角为α的直线经过焦点F,且与抛物线交于两点A、B.
(1)求抛物线的标准方程及准线方程;
(2)若α为锐角,作线段AB的中垂线m交x轴于点P.证明:
.



(1)求抛物线的标准方程及准线方程;
(2)若α为锐角,作线段AB的中垂线m交x轴于点P.证明:

已知抛物线C:
=2px(p>0)的准线方程为x=-
,F为抛物线的焦点
(I)求抛物线C的方程;
(II)若P是抛物线C上一点,点A的坐标为(
,2),求
的最小值;
(III)若过点F且斜率为1的直线与抛物线C交于M,N两点,求线段MN的中点坐标.


(I)求抛物线C的方程;
(II)若P是抛物线C上一点,点A的坐标为(


(III)若过点F且斜率为1的直线与抛物线C交于M,N两点,求线段MN的中点坐标.