- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4.
(1)求抛物线的方程;
(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点).
(1)求抛物线的方程;
(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点).
已知抛物线
的焦点到其准线的距离为
.
(1)求抛物线
的方程;
(2)设直线
与抛物线
相交于
两点,问抛物线
上是否存在点
,使得
是正三角形?若存在,求出点
的坐标;若不存在,请说明理由.


(1)求抛物线

(2)设直线







已知抛物线
的焦点为
,过点
的直线交抛物线
于
和
两点.
(1)当
时,求直线
的方程;
(2)若过点
且垂直于直线
的直线
与抛物线
交于
两点,记
与
的面积分别为
,求
的最小值.






(1)当


(2)若过点








