- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的顶点在原点,对称轴是
轴,并且经过点
,抛物线
的焦点为
,准线为
.
(1)求抛物线
的方程;
(2)过
且斜率为
的直线
与抛物线
相交于两点
、
,过
、
分别作准线
的垂线,垂足分别为
、
,求四边形
的面积.






(1)求抛物线

(2)过












已知动点
到定点
的距离比它到
轴的距离大
.
(1)求动点
的轨迹
的方程;
(2)设点
(
为常数),过点
作斜率分别为
的两条直线
与
,
交曲线
于
两点,
交曲线
于
两点,点
分别是线段
的中点,若
,求证:直线
过定点.





(1)求动点


(2)设点
















在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.






(1)求点

(2)经过点









已知点F是抛物线C:y2=2px(p>0)的焦点,若点P(x0,4)在抛物线C上,且
.
(1)求抛物线C的方程;
(2)动直线l:x=my+1(m
R)与抛物线C相交于A,B两点,问:在x轴上是否存在定点D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分别为直线AD,BD的斜率)若存在,求出点D的坐标;若不存在,请说明理由.

(1)求抛物线C的方程;
(2)动直线l:x=my+1(m

在平面直角坐标系xOy中,点
满足方程
.
(1)求点M的轨迹C的方程;
(2)作曲线C关于
轴对称的曲线,记为
,在曲线C上任取一点
,过点P作曲线C的切线l,若切线l与曲线
交于A,B两点,过点A,B分别作曲线
的切线
,
,且
,
的交点为Q,试问以Q为直角的
是否存在,若存在,求出点P的坐标;若不存在,请说明理由.


(1)求点M的轨迹C的方程;
(2)作曲线C关于









