(本小题满分16分)已知椭圆的离心率为,并且椭圆经过点,过原点的直线与椭圆交于两点,椭圆上一点满足

(1)求椭圆的方程;
(2)证明:为定值;
(3)是否存在定圆,使得直线绕原点转动时,恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
(本小题满分12分)已知椭圆)的离心率为,右焦点到直线的距离为.
(1)求椭圆的方程;
(2)已知点,斜率为的直线交椭圆于两个不同点.,设直线的斜率分别为,①若直线过椭圆的左顶点,求此时的值;②试猜测的关系,并给出你的证明.
当前题号:2 | 题型:解答题 | 难度:0.99
设椭圆的左右焦点分别为,离心率,点在直线的左侧,且F2l的距离为.
(1)求的值;
(2)设上的两个动点,,证明:当取最小值时,.
当前题号:3 | 题型:解答题 | 难度:0.99
如图所示,椭圆M=1(a>b>0)的离心率为,右准线方程为x=4,过点P(0,4)作关于y轴对称的两条直线l1l2,且l1与椭圆交于不同两点ABl2与椭圆交于不同两点DC.

(1) 求椭圆M的方程;
(2) 证明:直线AC与直线BD交于点Q(0,1);
(3) 求线段AC长的取值范围.
当前题号:4 | 题型:解答题 | 难度:0.99
在平面直角坐标系xOy中,椭圆C=1(a>b>0)的离心率为,椭圆上动点P到一个焦点的距离的最小值为3(-1).

(1) 求椭圆C的标准方程;
(2) 已知过点M(0,-1)的动直线l与椭圆C交于AB两点,试判断以线段AB为直径的圆是否恒过定点,并说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆过点,且它的离心率.直线l:y=kx+t与椭圆C1交于M、N两点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求证:M、N两点的横坐标的平方和为定值;
(Ⅲ)若直线l与圆相切,椭圆上一点P满足,求实数m的取值范围.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆E=1(a>b>0)的离心率为,焦点到相应准线的距离为.

(1) 求椭圆E的标准方程;
(2) 已知P(t,0)为椭圆E外一动点,过点P分别作直线l1l2,直线l1l2分别交椭圆E于点AB和点CD,且l1l2的斜率分别为定值k1k2,求证:为定值.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,在平面直角坐标系xOy中,已知椭圆C (a>b>0)的离心率为,且右焦点到右准线l的距离为1.过x轴上一点M(m,0)(m为常数,且m∈(0,2))的直线与椭圆C交于AB两点,与l交于点PD是弦AB的中点,直线ODl交于点Q.

(1) 求椭圆C的标准方程.
(2) 试判断以PQ为直径的圆是否经过定点.若是,求出定点坐标;若不是,请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
(本小题满分14分)已知椭圆G的离心率为,其短轴的两端点分别为A(0,1),B(0,-1).

(Ⅰ)求椭圆G的方程;
(Ⅱ)若C,D是椭圆G上关于y轴对称的两个不同点,直线轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
如图,为椭圆的左、右焦点,是椭圆的两个顶点,椭圆的离心率.若在椭圆上,则点称为点的一个“好点”.直线与椭圆交于两点,两点的“好点”分别为,已知以为直径的圆经过坐标原点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99