刷题首页
题库
高中数学
题干
(本小题满分14分)已知椭圆G的离心率为
,其短轴的两端点分别为A(0,1),B(0,-1).
(Ⅰ)求椭圆G的方程;
(Ⅱ)若C,D是椭圆G上关于y轴对称的两个不同点,直线
与
轴分别交于点
.试判断以
为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2015-05-11 05:59:16
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.
同类题2
已知椭圆
的离心率
,左、右焦点分别为
,点
,点
在线段
的中垂线上.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,直线
与
的倾斜角分别为
,且
,求证:直线
过定点,并求该定点的坐标.
同类题3
已知椭圆
的离心率为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)设直线
与椭圆
的交点为
,求弦长
.
同类题4
设椭圆
的左、右焦点分别为
,过点
作垂直于
的直线交椭圆于
两点,若椭圆离心率为
,
的面积为
.
(1)求椭圆
的标准方程;
(2)动直线
与椭圆
交于
两点,且
,是否存在圆
使得
恰好是该圆的切线,若存在,求出
;若不存在,说明理由.
同类题5
已知椭圆
,离心率为
,两焦点分别为
,过
的直线交椭圆
于
、
两点,且
的周长为16.
(1)求椭圆
的方程;
(2)过点
且斜率为1的直线交椭圆与PQ两点,求 |PQ|的长.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题