- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线C1的渐近线是
x±2y=0,焦点坐标是F1(-
,0)、F2(
,0).
(1)求双曲线C1的方程;
(2)若椭圆C2与双曲线C1有公共的焦点,且它们的离心率之和为
,点P在椭圆C2上,且|PF1|=4,求∠F1PF2的大小.



(1)求双曲线C1的方程;
(2)若椭圆C2与双曲线C1有公共的焦点,且它们的离心率之和为

已知椭圆
:
的左、右焦点分别为
,
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为1.

(1)求椭圆的标准方程;
(2)设
为椭圆上一点,若
,求
的面积;
(3)若
为钝角,求
点横坐标的取值范围.









(1)求椭圆的标准方程;
(2)设



(3)若


已知点
,过点
作抛物线
的切线
,切点
在第二象限.

求切点
的纵坐标;
有一离心率为
的椭圆
恰好经过切点
,设切线
与椭圆的另一交点为点
,记切线
的斜率分别为
,
,
,若
,求椭圆的方程.


















