- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
(
)的离心率为
,
,
,
,
的面积为
.
(1)求椭圆
的方程;
(2)设
是椭圆
上的一点,直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.









(1)求椭圆

(2)设









已知椭圆C的中心在原点,焦点在x轴上,短轴长为
,离心率为
.
Ⅰ
求椭圆C的方程;
Ⅱ
若过点
的直线与椭圆C交于A,B两点,且P点平分线段AB,求直线AB的方程;
Ⅲ
一条动直线l与椭圆C交于不同两点M,N,O为坐标原点,
的面积为
求证:
为定值.












已知椭圆C:
(
)的左右焦点分别为
,
,离心率为
,椭圆C上的一点P到
,
的距离之和等于4.
(1)求椭圆C的标准方程;
(2)设
,过椭圆C的右焦点
的直线与椭圆C交于A,B两点,若满足
恒成立,求m的最小值.







(1)求椭圆C的标准方程;
(2)设



设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为
的椭圆记作C2

(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|长.
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆
,是否存在定圆
,使得
与
恒相切?若存在,求出
的方程,若不存在,请说明理由.


(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|长.
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆





如图,已知椭圆
的长轴AB长为4,离心率
为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线
于点M,N为
的中点.

(1)求椭圆
的方程;
(2)证明:Q点在以
为直径的圆
上;
(3)试判断直线QN与圆
的位置关系.





(1)求椭圆

(2)证明:Q点在以


(3)试判断直线QN与圆

已知椭圆E:
+
=1(a>0,b>0)的离心率为
,F1,F2分别为左.右焦点,A,B分别为左.右顶点,D为上顶点,原点O到直线BD的距离为
.设点P在第一象限,且PB⊥x轴,连接PA交椭圆于点C,记点P的纵坐标为t.

(1) 求椭圆E的方程;
(2) 若△ABC的面积等于四边形OBPC的面积,求直线PA的方程;
(3) 求过点B,C,P的圆的方程(结果用t表示).





(1) 求椭圆E的方程;
(2) 若△ABC的面积等于四边形OBPC的面积,求直线PA的方程;
(3) 求过点B,C,P的圆的方程(结果用t表示).