- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆
的离心率为
,过点
的动直线
与椭圆相交于
两点,当直线
平行于
轴时,直线
被椭圆
截得线段长为
.
(1)求椭圆
的方程;
(2)在
轴上是否存在异于点
的定点
,使得直线
变化时,总有
?若存在,求出点
的坐标;若不存在,请说明理由.










(1)求椭圆

(2)在






已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.




(Ⅰ)求椭圆

(Ⅱ)设











(Ⅲ)在(Ⅱ)的条件下,过点





已知椭圆
的左、右焦点为F1,F2,离心率为
,且点
在椭圆上.
(1)求椭圆C的标准方程;
(2)若直线l过点M(0,﹣2)且与椭圆C相交于A,B两点,且△OAB(O为坐标原点)的面积为
,求出直线l的方程.



(1)求椭圆C的标准方程;
(2)若直线l过点M(0,﹣2)且与椭圆C相交于A,B两点,且△OAB(O为坐标原点)的面积为

已知椭圆
的离心率为
,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上的任意一点,射线
与椭圆
交于点
,过点
的直线
与椭圆
有且只有一个公共点,直线
与椭圆
交于
两个相异点,证明:
面积为定值.




(1)求椭圆

(2)设点












已知椭圆C:
的左、右焦点分别为
,
,离心率为
,点
在椭圆C上,且
⊥
,△F1MF2的面积为
.
(1)求椭圆C的标准方程;
(2)已知直线l与椭圆C交于A,B两点,
,若直线l始终与圆
相切,求半径r的值.









(1)求椭圆C的标准方程;
(2)已知直线l与椭圆C交于A,B两点,

