刷题首页
题库
高中数学
题干
已知椭圆
:
(
)的离心率为
,
,
,
,
的面积为
.
(1)求椭圆
的方程;
(2)设
是椭圆
上的一点,直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-02 12:11:21
答案(点此获取答案解析)
同类题1
设曲线
是焦点在
轴上的椭圆,两个焦点分别是是
,
,且
,
是曲线上的任意一点,且点
到两个焦点距离之和为4.
(1)求
的标准方程;
(2)设
的左顶点为
,若直线
:
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.
同类题2
已知椭圆
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为
,求
面积的最大值.
同类题3
设椭圆
的焦点为
,且该椭圆过点
.
(1)求椭圆
的标准方程;
(2)若椭圆
上的点
满足
,求
的值.
同类题4
分别以双曲线
的焦点为顶点,以双曲线
的顶点为焦点作椭圆
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
的坐标为
,在
轴上是否存在定点
,过点
且斜率为
的动直线
交椭圆于
两点,使以
为直径的圆恒过点
,若存在,求出
的坐标;若不存在,说明理由.
同类题5
已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆
的方程;
(2)过点
作两条直线,分别交椭圆
于
两点(异于
),当直线
,
的斜率之和为4时,直线
恒过定点,求出定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据离心率求椭圆的标准方程