- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我们把离心率为黄金分割系数
的椭圆称为“黄金椭圆”.已知“黄金椭圆”
的中心在坐标原点,
为左焦点,
,
分别为右顶点和是上顶点,则
( )








A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
的左、右焦点分别是
,若离心率
,则称椭圆
为“黄金椭圆”.下列有三个命题:
①在黄金椭圆
中,
成等比数列;
②在黄金椭圆
中,若上顶点、右顶点分别为
,则
;
③在黄金椭圆
中,以
为顶点的菱形
的内切圆经过焦点
.
正确命题的个数是( )




①在黄金椭圆


②在黄金椭圆



③在黄金椭圆




正确命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.








(Ⅰ)求椭圆

(Ⅱ)如图,








已知椭圆
:
过点
,且椭圆的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)斜率为
的直线
交椭圆
于
,
两点,且
.若直线
上存在点P,使得
是以
为顶角的等腰直角三角形,求直线
的方程.




(Ⅰ)求椭圆

(Ⅱ)斜率为










已知椭圆
:
的离心率
,且过焦点的最短弦长为3.
(1)求椭圆
的标准方程;
(2)设
分别是椭圆
的左、右焦点,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.



(1)求椭圆

(2)设







