- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
(a>b>0)的离心率e
.
(1)若点P(1,
)在椭圆E上,求椭圆E的标准方程;
(2)若D(2,0)在椭圆内部,过点D斜率为
的直线交椭圆E于M.N两点,|MD|=2|ND|,求椭圆E的方程.


(1)若点P(1,

(2)若D(2,0)在椭圆内部,过点D斜率为

圆锥曲线与空间几何体具有深刻而广泛的联系,如图所示,底面半径为1,高为3的圆柱内放有一个半径为1的球,球与圆柱下底而相切,作不与圆柱底面平行的平面
与球相切于点
,若平面
与圆柱侧面相交所得曲线为封闭曲线
,
是以
为一个焦点的椭圆,则
的离心率的取值范围是( )









A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
,直线
不经过椭圆上顶点
,与椭圆
交于
,
不同两点.
(1)当
,
时,求椭圆
的离心率的取值范围;
(2)若
,直线
与
的斜率之和为
,证明:直线
过定点.






(1)当



(2)若





设椭圆C:
(a>b>0)的左,右焦点分别为F1,经过点F1的直线与椭圆C相交于M,N两点.若|MF2|=| F1F2|,且7|MF1|=4| MN|,则椭圆C的离心率为___________.
