- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知F1,F2分别是椭圆C:
1(>b>0)的左、右焦点,过F2且不与x轴垂直的动直线l与椭圆交于M,N两点,点P是椭圆C右准线上一点,连结PM,PN,当点P为右准线与x轴交点时有2PF2=F1F2.
(1)求椭圆C的离心率;
(2)当点P的坐标为(2,1)时,求直线PM与直线PN的斜率之和.

(1)求椭圆C的离心率;
(2)当点P的坐标为(2,1)时,求直线PM与直线PN的斜率之和.
设椭圆
的右焦点为
,过点
作与
轴垂直的直线
交椭圆于
,
两点(点
在第一象限),过椭圆的左顶点和上顶点的直线
与直线
交于
点,且满足
,设
为坐标原点,若
,
,则该椭圆的离心率为( )















A.![]() | B.![]() | C.![]() ![]() | D.![]() |
椭圆
:
的离心率为
,右顶点为
,下顶点为
,且
.
(1)求椭圆
的方程;
(2)若椭圆
与直线
相交于
,
两点,直线
,
分别与
轴交于
,
两点.试探究
,
两点的横坐标的乘积是否为定值,说明理由.






(1)求椭圆

(2)若椭圆











如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,且PF1=3F1Q,若PF2垂直于x轴,则椭圆C的离心率为( )



A.![]() | B.![]() | C.![]() | D.![]() |