- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系xOy中,
,
分别是椭圆
的左,右焦点,点P是椭圆E上一点,满足
轴,
.

(1)求椭圆E的离心率;
(2)过点
的直线l与椭圆E交于两点A,B,若在椭圆B上存在点Q,使得四边形OAQB为平行四边形,求直线l的斜率.






(1)求椭圆E的离心率;
(2)过点

已知椭圆
1(a>b>0)的左、右焦点分别为F1、F2,半焦距为c,且在该椭圆上存在异于左、右顶点的一点P,满足2a•sin∠PF1F2=3c•sin∠PF2F1,则椭圆离心率的取值范围为_____.

已知椭圆C:
的左、右焦点分别为
,
,离心率为
,点
在椭圆C上,且
⊥
,△F1MF2的面积为
.
(1)求椭圆C的标准方程;
(2)已知直线l与椭圆C交于A,B两点,
,若直线l始终与圆
相切,求半径r的值.









(1)求椭圆C的标准方程;
(2)已知直线l与椭圆C交于A,B两点,


在平面直角坐标系xOy中,已知椭圆
1(a>b>0)的右顶点为(2,0),离心率为
,P是直线x=4上任一点,过点M(1,0)且与PM垂直的直线交椭圆于A,B两点.
(1)求椭圆的方程;
(2)若P点的坐标为(4,3),求弦AB的长度;
(3)设直线PA,PM,PB的斜率分别为k1,k2,k3,问:是否存在常数λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,说明理由.


(1)求椭圆的方程;
(2)若P点的坐标为(4,3),求弦AB的长度;
(3)设直线PA,PM,PB的斜率分别为k1,k2,k3,问:是否存在常数λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,说明理由.
