- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
.

(1)求椭圆
的方程.
(2)过椭圆
右焦点
的直线,交椭圆
于
两点,交直线
于点
,判定直线
的斜率是否依次构成等差数列?请说明理由.






(1)求椭圆

(2)过椭圆







如图,已知椭圆
过点.
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
. 证明:
















(I)求椭圆的标准方程;
(II)设直线






已知椭圆
上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,
,
三点共线,求
的值.







(Ⅰ)求椭圆

(Ⅱ)点













(题文)(题文)已知点
在椭圆
上,椭圆离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
右焦点
的直线
与椭圆交于两点
、
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.



(Ⅰ)求椭圆

(Ⅱ)过椭圆









已知
分别是椭圆
的长轴与短轴的一个端点,
是椭圆的左、右焦点,以
点为圆心、3为半径的圆与以
点为圆心、1为半径的圆的交点在椭圆
上,且
.
(1)求椭圆
的方程;
(2)设
为椭圆
上一点,直线
与
轴交于点
,直线
与
轴交于点
,求证:
.







(1)求椭圆

(2)设









已知椭圆
的右焦点为
,上顶点为
,直线
与直线
垂直,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过点
作椭圆
的两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.







(1)求椭圆

(2)过点






已知椭圆
经过点
,且与椭圆
有相同的焦点.
(1)求椭圆
的标准方程;
(2)若动直线
与椭圆
有且只有一个公共点
,且与直线
交于点
,问:以线段
为直径的圆是否经过一定点
?若存在,求出定点
的坐标;若不存在,请说明理由.




(1)求椭圆

(2)若动直线








在平面直角坐标系中,焦点在
轴上的椭圆
经过点
,其中
为椭圆
的离心率.过点
作斜率为
的直线
交椭圆
于
两点(
在
轴下方).
(1)求椭圆
的方程;
(2)过原点
且平行于
的直线交椭圆
于点
,
,求
的值;
(3)记直线
与
轴的交点为
.若
,求直线
的斜率
.












(1)求椭圆

(2)过原点






(3)记直线







已知椭圆
的中心在坐标原点,焦点在坐标轴上,焦距长为2,左准线为
:
.
(1)求椭圆
的方程及其离心率;
(2)若过点
的直线
交椭圆
于
,
两点,且
为线段
的中点,求直线
的方程;
(3)过椭圆
右准线
上任一点
引圆
:
的两条切线,切点分别为
,
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.



(1)求椭圆

(2)若过点








(3)过椭圆








已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆
的方程;
(2)设
,过点
作直线
交椭圆
于不同于
的
两点,直线
的斜率分别为
,试问:
是否为定值?若是,求出定值,若不是,请说明理由.



(1)求椭圆

(2)设








