- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的焦距为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
.取点
,连接
,过点
作
的垂线交
轴于点
.点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆
一定有唯一的公共点?并说明理由.



(Ⅰ)求椭圆

(Ⅱ)设

















已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.










(1)求曲线

(2)过点










已知椭圆
的离心率为
,且
过点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点(点
均在第一象限),且直线
的斜率成等比数列,证明:直线
的斜率为定值.




(1)求椭圆

(2)若直线






已知椭圆
,四点
、
、
、
中恰有三点在椭圆
上。
(1)求
的方程:
(2)椭圆
上是否存在不同的两点
、
关于直线
对称?若存在,请求出直线
的方程,若不存在,请说明理由;
(3)设直线
不经过点
且与
相交于
、
两点,若直线
与直线
的斜率的和为1,求证:
过定点。






(1)求

(2)椭圆





(3)设直线








如图所示,A,B分别是椭圆C:
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.


(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

已知椭圆C的方程为
,P
在椭圆上,椭圆的左顶点为A,左、右焦点分别为
,
的面积是
的面积的
倍.
(1)求椭圆C的方程;(2)直线
与椭圆C交于M,N,连接
并延长交椭圆C于D,E,连接DE,指出
与
之间的关系,并说明理由.






(1)求椭圆C的方程;(2)直线




给定椭圆
,称圆
为椭圆
的“伴随圆”.已知点
是椭圆
上的点
(1)若过点
的直线
与椭圆
有且只有一个公共点,求
被椭圆
的伴随圆
所截得的弦长:
(2)
是椭圆
上的两点,设
是直线
的斜率,且满足
,试问:直线
是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。





(1)若过点






(2)






已知椭圆
(
)的离心率是
,其左、右焦点分别为
,短轴顶点分别为
,如图所示,
的面积为1.

(1)求椭圆
的标准方程;
(2)过点
且斜率为
的直线
交椭圆
于
两点(异于
点),证明:直线
和
的斜率和为定值.







(1)求椭圆

(2)过点







