刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,上顶点为
,直线
与直线
垂直,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过点
作椭圆
的两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-22 07:49:56
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左,右焦点分别为
,
,且经过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作一条斜率不为
的直线
与椭圆
相交于
两点,记点
关于
轴对称的点为
.证明:直线
经过
轴上一定点
,并求出定点
的坐标.
同类题2
已知椭圆
的左、右焦点分别为
,
,点
在椭圆
上.
(
)求椭圆
的标准方程.
(
)是否存在斜率为
的直线
,使得当直线
与椭圆
有两个不同交点
,
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.
同类题3
已知椭圆
的离心率是
,且椭圆经过点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与圆
相切:
(ⅰ)求圆
的标准方程;
(ⅱ)若直线
过定点
,与椭圆
交于不同的两点
,与圆
交于不同的两点
,求
的取值范围.
同类题4
已知椭圆
过点
,且左焦点与抛物线
的焦点重合。
(1)求椭圆的标准方程;
(2)若直线
与椭圆交于不同的两点
、
,线段
的中点记为
,且线段
的垂直平分线过定点
,求
的取值范围。
同类题5
已知离心率为
的椭圆
过点
作两条互相垂直的直线,分别交椭圆于
两点.
(1)求椭圆
方程;
(2)求证:直线
过定点,并求出此定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
求直线与椭圆的交点坐标