刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆
的方程;
(2)设
,过点
作直线
交椭圆
于不同于
的
两点,直线
的斜率分别为
,试问:
是否为定值?若是,求出定值,若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-10 07:18:00
答案(点此获取答案解析)
同类题1
已知
是椭圆
的左、右顶点,
是
上不同于
的任意一点,若
的离心率为
,则直线
的斜率之积为( )
A.
B.
C.
D.
同类题2
设
分别是椭圈
的左、右焦点,
是椭圆上第二象限内的一点且
与
轴垂直,直线
与椭圆的另一个交点为
.
(1)若直线
的斜率为
,求椭圆的离心率;
(2)若直线
与
轴的交点为
,且
求
.
同类题3
已知点
是椭圆
C
:
上的一点,椭圆
C
的离心率与双曲线
的离心率互为倒数,斜率为
直线
l
交椭圆
C
于
B
,
D
两点,且
A
、
B
、
D
三点互不重合.
(1)求椭圆
C
的方程;
(2)若
分别为直线
AB
,
AD
的斜率,求证:
为定值.
同类题4
在平面直角坐标系
中,已知椭圆
的左焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)已知圆
,连接
并延长交圆
于点
为椭圆长轴上一点(异于左、右焦点),过点
作椭圆长轴的垂线分别交椭圆
和圆
于点
(
均在
轴上方).连接
,记
的斜率为
,
的斜率为
.
①求
的值;
②求证:直线
的交点在定直线上.
同类题5
已知圆
O
经过椭圆
C
:
的两个焦点以及两个顶点,且点
在椭圆
C
上.
求椭圆
C
的方程;
若直线
l
与圆
O
相切,与椭圆
C
交于
M
、
N
两点,且
,求直线
l
的倾斜角.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题