刷题首页
题库
高中数学
题干
如图,已知椭圆
过点.
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
. 证明:
上一题
下一题
0.99难度 解答题 更新时间:2012-02-24 08:53:20
答案(点此获取答案解析)
同类题1
焦点在
轴上,离心率
,且过
的椭圆的标准方程为_______.
同类题2
已知椭圆
的离心率
,过点
的直线与原点的距离为
.
(1)求椭圆方程;
(2)若直线
与椭圆交于
两点,试求
面积的范围.
同类题3
已知椭圆中心在原点,焦点在
x
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
同类题4
在平面直角坐标系
xOy
内,点(
)在椭圆
E
:
(
a
>0,
b
>0),椭圆
E
的离心率为
,直线
l
过左焦点
F
且与椭圆
E
交于
A
、
B
两点
(1)求椭圆
E
的标准方程;
(2)若动直线
l
与
x
轴不重合,在
x
轴上是否存在定点
P
,使得
PF
始终平分∠
APB
?若存在,请求出点
P
的坐标:若不存在,请说明理由.
同类题5
已知椭圆
的右焦点为
,且点
在椭圆
C
上.
(1)求椭圆
C
的标准方程;
(2)过椭圆
上异于其顶点的任意一点
Q
作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在
x
轴,
y
轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆
E
过
,且椭圆
上任意一点都不在圆
E
内,则称圆
E
为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点
F
的内切圆?若存在,求出圆心
E
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题