刷题首页
题库
高中数学
题干
(题文)(题文)已知点
在椭圆
上,椭圆离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
右焦点
的直线
与椭圆交于两点
、
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-20 01:55:04
答案(点此获取答案解析)
同类题1
已知椭圆
与椭圆
有相同的焦点,且过点
.
(1)求椭圆
的标准方程;
⑵ 若
P
是椭圆
上一点且在x轴上方,
F
1
、
F
2
为椭圆
的左、右焦点,若
为直角三角形,求p点坐标。
同类题2
已知椭圆
的离心率
,且椭圆过点
.
(1)求椭圆
的标准方程;
(2)设直线
与
交于
,
两点,点
在
上,
是坐标原点,若
,判断四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
同类题3
设
,
分别为椭圆
:
的左、右焦点,已知椭圆
上的点
到焦点
,
的距离之和为4.
(1)求椭圆
的方程;
(2)过点
作直线交椭圆
于
,
两点,线段
的中点为
,连结
并延长交椭圆于点
(
为坐标原点),若
,
,
等比数列,求线段
的方程.
同类题4
已知椭圆
过点
,
是该椭圆的左、右焦点,
是上顶点,且
是等腰直角三角形.
(1)求
的方程;
(2)已知
是坐标原点,直线
与椭圆
相交于
两点,点
在
上且满足四边形
是一个平行四边形,求
的最大值.
同类题5
已知椭圆
:
(
)的左右顶点分别为
,
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)设直线
不经过点
且与椭圆
交于
,
两点,若直线
与直线
的斜率之积为
,证明:直线
过顶点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题