- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
(a>b>0)的左右焦点分别为F1,F2,左右顶点分别为A,B,过右焦点F2且垂直于长轴的直线交椭圆于G,H两点,|GH|=3,△F1GH的周长为8.过A点作直线l交椭圆于第一象限的M点,直线MF2交椭圆于另一点N,直线NB与直线l交于点P.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)若△AMN的面积为
,求直线MN的方程;
(Ⅲ)证明:点P在定直线上.


(Ⅰ)求椭圆的标准方程;
(Ⅱ)若△AMN的面积为

(Ⅲ)证明:点P在定直线上.
如图,C、D是离心率为
的椭圆的左、右顶点,
、
是该椭圆的左、右焦点, A、B是直线
4上两个动点,连接AD和BD,它们分别与椭圆交于点E、F两点,且线段EF恰好过椭圆的左焦点
. 当
时,点E恰为线段AD的中点.

(Ⅰ)求椭圆的方程;
(Ⅱ)求证:以AB为直径的圆始终与直线EF相切.







(Ⅰ)求椭圆的方程;
(Ⅱ)求证:以AB为直径的圆始终与直线EF相切.
在平面直角坐标系
,已知椭圆
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆
的标准方程:
(2)已知点
,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.











(1)求椭圆

(2)已知点













已知椭圆
的离心率为
,左、右焦点分别为
、
,
为椭圆上异于长轴端点的点,且
的最大面积为
.
(1)求椭圆
的标准方程
(2)若直线
是过点
点的直线,且
与椭圆
交于不同的点
、
,是否存在直线
使得点
、
到直线
,的距离
、
,满足
恒成立,若存在,求
的值,若不存在,说明理由.







(1)求椭圆

(2)若直线














已知
是右焦点为
的椭圆
:
上一动点,若
的最小值为
,椭圆的离心率为
.
(I)求椭圆
的方程;
(II)当
轴且点
在
轴上方时,设直线
与椭圆
交于不同的两点
,若
平分
,则直线
的斜率是否为定值?若是,求出这个定值;若不是,说明理由.







(I)求椭圆

(II)当









已知椭圆
的左、右焦点分别为
,
,右顶点为
,离心率为
,过点
且不与
轴重合的直线
交椭圆
于
,
两点,当直线
轴时,
的面积为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
的方程为
,直线
交直线
于点
,直线
交直线
于点
,线段
的中点为
,试判定
是否为定值?若是,求出该定值;若不是,请说明理由.















(Ⅰ)求椭圆

(Ⅱ)若直线











已知椭圆
:
离心率为
,直线
被椭圆截得的弦长为
.
(1)求椭圆方程;
(2)设直线
交椭圆
于
,
两点,且线段
的中点
在直线
上,求证:线段
的中垂线恒过定点.





(1)求椭圆方程;
(2)设直线








已知椭圆Γ:
+
=1(a>b>0)的长轴长为4,离心率为
.
(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.



(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.
已知椭圆
:
,离心率
,
是椭圆的左顶点,
是椭圆的左焦点,
,直线
:
.
(1)求椭圆
方程;
(2)直线
过点
与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点,试问:以
为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.








(1)求椭圆

(2)直线











已知椭圆
的左、右焦点为
的坐标满足圆
方程
,且圆心
满足
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
、
两点,过
与
垂直的直线
交圆
于
、
两点,
为线段
中点,若
的面积
,求
的值.






(1)求椭圆

(2)过点















