- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(原创,较难)椭圆
的左右焦点分别为
,与y轴正半轴交于点B,若
为等腰直角三角形,且直
线被圆
所截得的弦长为2.
(1)求椭圆的方程;(2)直线l与椭圆交于点A、C,线段AC的中点为M,射线MO与椭圆交于点P,点O为
重心,探求
面积
是否为定值,若是求出这个值,若不是求
的取值范围





(1)求椭圆的方程;(2)直线l与椭圆交于点A、C,线段AC的中点为M,射线MO与椭圆交于点P,点O为




已知椭圆
的左右焦点分别为
,
,离心率为
.若点
为椭圆上一动点,
的内切圆面积的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作斜率为的动直线交椭圆于
两点,
的中点为
,在
轴上是否存在定点
,使得对于任意
值均有
,若存在,求出点
的坐标,若不存在,说明理由.








(1)求椭圆的标准方程;
(2)过点









已知椭圆
的中心在坐标原点
,焦点在
轴上,它的一个顶点恰好是抛物线
的焦点,它的离心率是双曲线
的离心率的倒数.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过椭圆
的右焦点
作直线
交椭圆
于
、
两点,交
轴于
点,若
,
,求证:
为定值.





(Ⅰ)求椭圆

(Ⅱ)过椭圆











已知椭圆
:
的左右焦点分别为
,且离心率为
,点
为椭圆上一动点,
面积的最大值为
.
(1)求椭圆
的标准方程;
(2)设
分别为椭圆的左右顶点,过点
作
轴的垂线
,
为
上异于点
的一点,以
为直径作圆
.若过点
的直线
(异于
轴)与圆
相切于点
,且
与直线
相交于点
,试判断
是否为定值,并说明理由.







(1)求椭圆

(2)设


















设椭圆C:
的左、右焦点分别为
、
,上顶点为A,在x轴负半轴上有一点B,满足
为线段
的中点,且AB⊥
。
(I)求椭圆C的离心率;
(II)若过A、B、
三点的圆与直线
:
相切,求椭圆C的方程;
(III)在(I)的条件下,过右焦点
作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由。






(I)求椭圆C的离心率;
(II)若过A、B、



(III)在(I)的条件下,过右焦点

已知椭圆
的左右焦点分别为
,
,点
是椭圆
上一点,若
,
,
的面积为
.
(1)求椭圆
的方程;
(2)若
,
分别为椭圆上的两点,且
,求证:
为定值,并求出该定值.









(1)求椭圆

(2)若




已知椭圆
经过点
,且两个焦点
的坐标依次为
和
.
(1)求椭圆
的标准方程;
(2)设
是椭圆
上的两个动点,
为坐标原点,直线
的斜率为
,直线
的斜率为
,若
,证明:直线
与以原点为圆心的定圆相切,并写出此定圆的标准方程.





(1)求椭圆

(2)设










已知
、
是椭圆
(
)的左、右焦点,过
作
轴的垂线与
交于
、
两点,
与
轴交于点
,
,且
,
为坐标原点.
(1)求
的方程;
(2)设
为椭圆
上任一异于顶点的点,
、
为
的上、下顶点,直线
、
分别交
轴于点
、
.若直线
与过点
、
的圆切于点
.试问:
是否为定值?若是,求出该定值;若不是,请说明理由。









两点,






(1)求

(2)设















设椭圆
的右焦点为
,右顶点为
,已知
,其中
为坐标原点,
为椭圆的离心率.
(1)求椭圆
的方程;
(2)是否存在斜率为2的直线
,使得当直线
与椭圆
有两个不同交点
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.






(1)求椭圆

(2)是否存在斜率为2的直线









