- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
的左、右焦点分别是
,点
,若
的内切圆的半径与外接圆的半径的比是
.
(1)求椭圆C的方程;
(2)点M是椭圆C的左顶点,P、Q是椭圆上异于左、右顶点的两点,设直线MP、MQ的斜率分别为
、
,若
,试问直线PQ是否过定点?若过定点,求该定点坐标;若不过定点,请说明理由.





(1)求椭圆C的方程;
(2)点M是椭圆C的左顶点,P、Q是椭圆上异于左、右顶点的两点,设直线MP、MQ的斜率分别为



在平面直角坐标系
中,
分别是椭圆
的左、右顶点(如图所示),点
在椭圆的长轴
上运动,且
.设圆
是以点
为圆心,
为半径的圆.
(1)若
,圆
和椭圆在第一象限的交点坐标为
,求椭圆的方程;
(2)若椭圆的离心率为
,过点
作互相垂直的两条直线,交椭圆于P,Q两点,若直线PQ过点M,求m的值(用含
的代数式表示);
(3)当圆
与椭圆有且仅有点
一个交点时,求
的运动范围(用含
的代数式表示).









(1)若



(2)若椭圆的离心率为



(3)当圆




已知椭圆
的左右焦点分别为
,
,抛物线
的顶点为
,且经过
,
,椭圆
的上顶点
满足
.

(1)求椭圆
的方程;
(2)设点
满足
,点
为抛物线
上一动点,抛物线
在
处的切线与椭圆交于
,
两点,求
面积的最大值.











(1)求椭圆

(2)设点









已知顶点为原点的抛物线C的焦点与椭圆
的上焦点重合,且过点
.
(1)求椭圆的标准方程;
(2)若抛物线上不同两点A,B作抛物线的切线,两切线的斜率
,若记AB的中点的横坐标为m,AB的弦长
,并求
的取值范围.


(1)求椭圆的标准方程;
(2)若抛物线上不同两点A,B作抛物线的切线,两切线的斜率



如图,已知椭圆C的方程为
,
为半焦距,椭圆C的左、右焦点分别为
,椭圆C的离心率为
.

(1)若椭圆过点
,两条准线之间的距离为
,求椭圆C的标准方程;
(2)设直线
与椭圆C相交于
,
两点,且
四点共圆,若
,试求
的最大值.





(1)若椭圆过点


(2)设直线






如图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
,
为
椭圆上一点,且
垂直于
轴,连结
并延长交椭圆于另一点
,设
.

(1)若点
的坐标为
,求椭圆
的方程及
的值;
(2)若
,求椭圆
的离心率的取值范围.












(1)若点




(2)若

