- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
.已知
和
都在椭圆上,其中
为椭圆的离心率.
(1)求椭圆的方程;
(2)设
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点P.
(i)若
,求直线
的斜率;
(ii)求证:
是定值.







(1)求椭圆的方程;
(2)设






(i)若


(ii)求证:


已知抛物线
的焦点为F,以点
为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点.
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.


(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.
设椭圆



(Ⅰ)求椭圆

(Ⅱ)已知过点





(Ⅲ)过点





已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与
构成正三角形.
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值? 若存在,求出
的坐标及定值;若不存在,请说明理由.




(1)求椭圆的方程;
(2)若过点







已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.



(Ⅰ)求椭圆的方程;
(Ⅱ)过点

已知椭圆
的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由.

(1)求椭圆

(2)已知直线









椭圆
以双曲线
的实轴为短轴、虚轴为长轴,且与抛物线
交于
两点.
(1)求椭圆
的方程及线段
的长;
(2)在
与
图像的公共区域内,是否存在一点
,使得
的弦
与
的弦
相互垂直平分于点
?若存在,求点
坐标,若不存在,说明理由.




(1)求椭圆


(2)在









已知椭圆C:
1(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.


(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

已知点




(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,



(3)在(2)的条件下,当


已知椭圆中心在原点,焦点在x轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)已知直线l与椭圆相交于P、Q两点,O为原点,且OP⊥OQ.试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由.


(1)求椭圆的标准方程;
(2)已知直线l与椭圆相交于P、Q两点,O为原点,且OP⊥OQ.试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由.