- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,椭圆E:
(a>0,b>0)经过点A(
,
),且点F(0,-1)为其一个焦点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E与y轴的两个交点为A1,A2,不在y轴上的动点P在直线y=b2上运动,直线PA1,PA2分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.




(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E与y轴的两个交点为A1,A2,不在y轴上的动点P在直线y=b2上运动,直线PA1,PA2分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.
已知椭圆
过点
,且离心率为
.
(1)求椭圆
的方程;
(2)
为椭圆
的左右顶点,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:以线段
为直径的圆恒过
轴上的定点.



(1)求椭圆

(2)










已知椭圆:
的左右焦点分别为
,离心率为
,两焦点与上下顶点形成的菱形面积为2.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆交于A, B两点,四边形
为平行四边形,
为坐标原点,且
,求直线
的方程.



(1)求椭圆的方程;
(2)过点






已知椭圆
:
上的一动点
到右焦点的最短距离为
,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 过点
(
,
)的动直线
交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得无论
如何转动,以
为直径的圆恒过定点
?若存在,求出点
的坐标;若不存在,请说明理由.





(Ⅰ) 求椭圆

(Ⅱ) 过点













在平面直角坐标系
中,点
,动点
满足
(1)求点
的轨迹
的方程;
(2)若直线
与轨迹
相交于
两点,直线
与轨迹
相交于
两点,顺次连接
得到的四边形
是菱形,求
.




(1)求点


(2)若直线










在平面直角坐标系中,已知动点
,点
点
与点
关于直线
对称,且
.直线
是过点
的任意一条直线.
(1)求动点
所在曲线
的轨迹方程;
(2)设直线
与曲线
交于
两点,且
,求直线
的方程;
(3)若直线
与曲线
交于
两点,与线段
交于点
(点
不同于点
),直线
与直线
交于点
,求证:
是定值.








(1)求动点


(2)设直线





(3)若直线











已知
点为平面直角坐标系
中的点,点
为线段
的中点,当
变化时,点
形成的轨迹∏.
(1)求点
的轨迹∏的方程;
(2)设点
的坐标为
,是否存在直线
交点
的轨迹∏于
两点,且使点
为
的垂心?若存在,求出直线的方程;若不存在,请说明理由.






(1)求点

(2)设点







如图,分别过椭圆
:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点,直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.

(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.


















(1)求椭圆

(2)是否存在定点



.本小题满分15分)
如图,已知椭圆E:
,焦点为
、
,双曲线

的顶点是该椭圆的焦点,设
是双曲线
上异于顶点的任一点,直线
、
与椭圆的交点分别为
和
,已知三角形
的周长等于
,椭圆四个顶点组成的菱形的面积为
.

(1)求椭圆
与双曲线
的方程;
(2)设直线
、
的斜率分别为
和
,探求
和
的关系;
(3)是否存在常数
,使得
恒成立?
若存在,试求出
的值;若不存在, 请说明理由.
如图,已知椭圆E:

















(1)求椭圆


(2)设直线






(3)是否存在常数


若存在,试求出

(本小题满分12分)已知椭圆
的中心在坐标原点,右焦点为
,
、
是椭圆
的左、右顶点,
是椭圆
上异于
、
的动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)是否存在一定点
(
),使得当过点
的直线
与曲线
相交于
,
两点时,
为定值?若存在,求出定点和定值;若不存在,请说明理由.











(1)求椭圆

(2)是否存在一定点







