- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知焦点在
轴上的椭圆
,焦距为
,长轴长为
.
(1)求椭圆的标准方程;
(2)过点
作两条互相垂直的射线,与椭圆交于
两点.
①证明:点
到直线
的距离为定值,并求出这个定值;
②求
.




(1)求椭圆的标准方程;
(2)过点


①证明:点


②求


已知点
的坐标分别为
,
,直线
相交于点
,且它们的斜率之积是
(1)求点
的轨迹方程;
(2)过点
作两条互相垂直的射线,与点
的轨迹交于
两点.试判断点
到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由.






(1)求点

(2)过点





(本小题满分12分)已知椭圆
的一个顶点坐标为B(0,1),且点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于M,N且
,求证:
为定值.



(Ⅰ)求椭圆

(Ⅱ)若直线




已知椭圆
的离心率为
,点
在椭圆上.
(I)求椭圆C的方程;
(II)设椭圆的左右顶点分别是A、B,过点
的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.



(I)求椭圆C的方程;
(II)设椭圆的左右顶点分别是A、B,过点

已知中心在原点,焦点在
轴的椭圆过点
,且焦距为2,过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)当
,直线
是否恒过定点?如果是,求出定点坐标.如果不是,说明理由.







(1)求椭圆的标准方程;
(2)当


已知椭圆
的离心率是
.

(1)若点
在椭圆上,求椭圆的方程;
(2)若存在过点
的直线
,使点
关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.



(1)若点

(2)若存在过点




(本小题满分13分)已知椭圆
:
的离心率为
,过右焦点
的直线
与
相交于
,
两点,当
的斜率为
时,坐标原点
到
的距离为
.
(1)求椭圆
的标准方程;
(2)
上是否存在点
,使得当
绕
转到某一位置时,有
成立?若存在,求出所有的
的坐标与
的方程;若不存在,说明理由,













(1)求椭圆

(2)







(题文)已知离心率为
的椭圆C:
经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.


(Ⅰ)求椭圆C的方程;
(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.
已知椭圆
的右焦点为
,
为椭圆的上顶点,
为坐标原点,且
是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
分别作直线
交椭圆于
两点,设两直线的斜率分别为
,且
,证明:直线
过定点
.





(Ⅰ)求椭圆的方程;
(Ⅱ)过点







已知椭圆
的中心为坐标原点,右焦点为
,
、
分别是椭圆
的左、右顶点,
是椭圆
上异于
、
的动点,且
面积最大值为
.
(1)求椭圆
的方程;
(2)是否存在一定点
(
),使得过定点
的直线
与曲线
相交于
、
两点,且
为定值?若存在,求出定点和定值,若不存在,请说明理由.











(1)求椭圆

(2)是否存在一定点







