刷题首页
题库
高中数学
题干
已知点
是椭圆
E
:
(
)上一点,
F
1
、
F
2
分别是椭圆
E
的左、右焦点,
O
是坐标原点,
轴.
(1)求椭圆
E
的方程;
(2)设
A
、
B
是椭圆
E
上两个动点,
(
,且
).求证:直线
AB
的斜率等于椭圆
E
的离心率;
(3)在(2)的条件下,当
面积取得最大值时,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2011-02-27 06:56:31
答案(点此获取答案解析)
同类题1
已知椭圆C的焦点为
,过
F
2
的直线与
C
交于
A
,
B
两点.若
,
,则
C
的方程为
A.
B.
C.
D.
同类题2
已知椭圆
(
)的离心率为
,椭圆
上一点
到椭圆
两焦点距离之和为
,如图,
为坐标原点,平行与
的直线
l
交椭圆
于不同的两点
、
.
(1)求椭圆方程;
(2)若
的横坐标为
,求
面积的最大值;
(3)当
在第一象限时,直线
,
交
x
轴于
,
,若
PE
=
PF
,求点
的坐标.
同类题3
已知椭圆
的右焦点
到直线
的距离为
,
在椭圆
上.
(1)求椭圆
的方程;
(2)若过
作两条互相垂直的直线
,
是
与椭圆
的两个交点,
是
与椭圆
的两个交点,
分别是线段
的中点试,判断直线
是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由.
同类题4
已知椭圆
C
的中心在原点,以坐标轴为对称轴,且经过两点
,
.
(1)求椭圆
C
的方程;
(2)设椭圆
C
在
A
、
B
两点的切线分别为
、
,
P
为椭圆
C
上任意一点,点
P
到直线
、
的距离分别为
、
,证明:存在直线
,使得点
P
到
的距离
d
(其中
)满足
恒为定值,并求出这一定值.
同类题5
已知椭圆
的右焦点为
,左,右顶点分别为
,离心率为
,且过点
.
(1)求
的方程;
(2)设过点
的直线
交
于
,
(异于
)两点,直线
的斜率分别为
.若
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积