- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).

(1)若最大拱高
为6米,则隧道设计的拱宽
至少是多少米?(结果取整数)
(2)如何设计拱高
和拱宽
,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:
,椭圆的面积公式为
,其中
,
分别为椭圆的长半轴和短半轴长.

(1)若最大拱高


(2)如何设计拱高


参考数据:




已知椭圆C:
1左右焦点为F1,F2直线(
1)x
y
0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m,1).
(1)求椭圆C的方程;
(2)设P为椭圆C上任一点,过焦点F1,F2的弦分别为PM,PN,设
λ1
λ2
,求λ1+λ2的值.




(1)求椭圆C的方程;
(2)设P为椭圆C上任一点,过焦点F1,F2的弦分别为PM,PN,设



已知椭圆
:
的长轴长为4,左、右顶点分别为
,经过点
的动直线与椭圆
相交于不同的两点
(不与点
重合).
(1)求椭圆
的方程及离心率;
(2)求四边形
面积的最大值;
(3)若直线
与直线
相交于点
,判断点
是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)







(1)求椭圆

(2)求四边形

(3)若直线




设椭圆
的左右焦点分别为
,离心率是
,动点
在椭圆
上运动,当
轴时,
.

(1)求椭圆
的方程;
(2)延长
分别交椭圆于点
(
不重合).设
,求
的最小值.








(1)求椭圆

(2)延长





定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
.
(1)若椭圆
,判断
与
是否相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且焦点在
轴上、短半轴长为
的椭圆
的标准方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围;
(3)如图:直线
与两个“相似椭圆”
和
分别交于点
和点
,试在椭圆
和椭圆
上分别作出点
和点
(非椭圆顶点),使
和
组成以
为相似比的两个相似三角形,写出具体作法.(不必证明)

(1)若椭圆





(2)写出与椭圆









(3)如图:直线












