刷题首页
题库
高中数学
题干
设椭圆
的左右焦点分别为
,离心率是
,动点
在椭圆
上运动,当
轴时,
.
(1)求椭圆
的方程;
(2)延长
分别交椭圆于点
(
不重合).设
,求
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-29 11:16:40
答案(点此获取答案解析)
同类题1
已知椭圆
为其左右焦点,
为其上下顶点,四边形
的面积为
.点
为椭圆
上任意一点,以
为圆心的圆(记为圆
)总经过坐标原点
.
(1)求椭圆
的长轴
的最小值,并确定此时椭圆
的方程;
(2)对于(1)中确定的椭圆
,若给定圆
,则圆
和圆
的公共弦
的长是否为定值?如果是,求
的值;如果不是,请说明理由.
同类题2
已知椭圆
的离心率为
,其中左焦点为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同的两点
、
,且线段
的中点
在圆
上,求
的值.
同类题3
已知椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)
,
是过点
且互相垂直的两条直线,其中
交圆
于
,
两点,
交椭圆
于另一个点
,求
面积取得最大值时直线
的方程.
同类题4
已知椭圆
:
(
)的左,右焦点分别为
,
,且经过点
.
(1)求椭圆
的标准方程;
(2)若斜率为2的直线与椭圆
交于
,
两点,且
,求该直线的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程