刷题首页
题库
高中数学
题干
设椭圆
的左右焦点分别为
,离心率是
,动点
在椭圆
上运动,当
轴时,
.
(1)求椭圆
的方程;
(2)延长
分别交椭圆于点
(
不重合).设
,求
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-29 11:16:40
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
的焦距为
,短半轴的长为2,过点
P
(-2,1)且斜率为1的直线
l
与椭圆
C
交于
A
,
B
两点.
(1)求椭圆
C
的方程;
(2)求弦
AB
的长.
同类题2
设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)设直线
(直线
、
不重合),若
、
均与椭圆
相切,试探究在
轴上是否存在定点
,使点
到
、
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
同类题3
设
是焦距为2的椭圆
上一点,
是椭圆
的左、右顶点,直线
与
的斜率分别为
,且
.
(1)求椭圆
的方程;
(2)已知椭圆
上点
处切线方程为
,若
是直线
上任意一点,从
向椭圆
作切线,切点分别为
,求证直线
恒过定点,并求出该定点坐标.
同类题4
设椭圆C:
过点
,离心率为
.
(1)求椭圆C的方程;
(2)设斜率为1的直线
过椭圆C的左焦点且与椭圆C相交于A,B两点,求AB的中点M的坐标.
同类题5
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程