刷题首页
题库
高中数学
题干
已知椭圆
:
的长轴长为4,左、右顶点分别为
,经过点
的动直线与椭圆
相交于不同的两点
(不与点
重合).
(1)求椭圆
的方程及离心率;
(2)求四边形
面积的最大值;
(3)若直线
与直线
相交于点
,判断点
是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
上一题
下一题
0.99难度 解答题 更新时间:2020-02-29 10:44:02
答案(点此获取答案解析)
同类题1
已知椭圆
上任意一点
到两焦点的距离之和为6,且椭圆的离心率为
,则椭圆方程为( )
A.
B.
C.
D.
同类题2
已知椭圆
的离心率
,且椭圆过点
.
(I)求椭圆
的标准方程;
(II)已知点
为椭圆
的下顶点,
为椭圆
上与
不重合的两点,若直线
与直线
的斜率之和为
,试判断是否存在定点
,使得直线
恒过点
,若存在,求出点
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
的左焦点在抛物线
的准线上,且椭圆的短轴长为2,
分别为椭圆的左,右焦点,
分别为椭圆的左,右顶点,设点
在第一象限,且
轴,连接
交椭圆于点
,直线
的斜率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若三角形
的面积等于四边形
的面积,求
的值;
(Ⅲ)设点
为
的中点,射线
(
为原点)与椭圆交于点
,满足
,求
的值.
同类题4
已知椭圆Γ:
+
=1(
a
>
b
>0)的长轴长为4,离心率为
.
(1)求椭圆Γ的标准方程;
(2)过
P
(1,0)作动直线
AB
交椭圆Γ于
A
,
B
两点,
Q
(4,3)为平面上一定点连接
QA
,
QB
,设直线
QA
,
QB
的斜率分别为
k
1
,
k
2
,问
k
1
+
k
2
是否为定值,如果是,则求出该定值;否则,说明理由.
同类题5
已知点
A
(0,-2),椭圆
E
:
(
a
>
b
>0)的离心率为
,
F
是椭圆
E
的右焦点,直线
AF
的斜率为
,
O
为坐标原点.
(1)求
E
的方程;
(2)设过点
A
的动直线
l
与
E
相交于
P
,
Q
两点.当△
OPQ
的面积最大时,求
l
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定直线