刷题首页
题库
高中数学
题干
已知椭圆
:
的长轴长为4,左、右顶点分别为
,经过点
的动直线与椭圆
相交于不同的两点
(不与点
重合).
(1)求椭圆
的方程及离心率;
(2)求四边形
面积的最大值;
(3)若直线
与直线
相交于点
,判断点
是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
上一题
下一题
0.99难度 解答题 更新时间:2020-02-29 10:44:02
答案(点此获取答案解析)
同类题1
已知点
,
是圆
上的一个动点,
为圆心,线段
的垂直平分线与直线
的交点为
.
(1)求点
的轨迹
的方程;
(2)设
与
轴的正半轴交于点
,直线
与
交于
两点(
不经过
点),且
,
证明:直线
经过定点,并写出该定点的坐标.
同类题2
如图,
,
是离心率为
的椭圆的左、右顶点,
,
是该椭圆的左、右焦点,
,
是直线
上两个动点,连接
和
,它们分别与椭圆交于点
,
两点,且线段
恰好过椭圆的左焦点
.当
时,点
恰为线段
的中点.
(1)求椭圆的方程;
(Ⅱ)判断以
为直径的圆与直线
位置关系,并加以证明.
同类题3
已知椭圆
E
的中心为坐标原点离心率为
,
E
的左焦点与抛物线
的焦点重合,则椭圆
E
的方程为( )
A.
B.
C.
D.
同类题4
已知椭圆
的方程为
,点
为长轴的右端点.
为椭圆
上关于原点对称的两点.直线
与直线
的斜率
满足:
.
(1)求椭圆
的标准方程;
(2)若直线
与圆
相切,且与椭圆
相交于
两点,求证:以线段
为直径的圆恒过原点.
同类题5
已知椭圆C:
的左,右焦点分别为
且椭圆
上的点
到
两点的距离之和为4
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点,
为坐标原点直线
的斜率之积等于
,试探求△OMN的面积是否为定值,并说明理由
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定直线