刷题首页
题库
高中数学
题干
设椭圆的一个焦点为
,且
,则椭圆的标准方程为________
上一题
下一题
0.99难度 填空题 更新时间:2020-02-29 04:09:05
答案(点此获取答案解析)
同类题1
设椭圆
:
的左、右焦点分别为
,
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
的直线
与椭圆
相交于
,
两点,求
内切圆面积的最大值.
同类题2
已知椭圆
的离心率为
,左、右焦点分别是
,椭圆
上短轴的一个端点与两个焦点构成的三角形的面积为
;
(1)求椭圆
的方程;
(2)过
作垂直于
轴的直线
交椭圆
于
两点(点
在第二象限),
是椭圆上位于直线
两侧的动点,若
,求证:直线
的斜率为定值.
同类题3
已知椭圆
:
,离心率
,
是椭圆的左顶点,
是椭圆的左焦点,
,直线
:
.
(1)求椭圆
方程;
(2)直线
过点
与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点,试问:以
为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.
同类题4
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,
为坐标原点,
的斜率分别记为
,且
,请问椭圆
上是否存在点
使四边形
为平行四边形,若存在,求出
的坐标,若不存在,请说明理由.
同类题5
如图,在平面直角坐标系
中,直线
与椭圆
相切于点
,过椭圆的左、右焦点
分别作
重直于直线
于
,记
,当
为左顶点时,
,且当
时,四边形
的周长为22.
(1)求椭圆的标准方程;
(2)求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程