- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆定义及辨析
- + 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知两点
、
,动点
满足
,记
的轨迹为曲线
,直线
(
)交曲线
于
、
两点,点
在第一象限,
轴,垂足为
,连结
并延长交曲线
于点
.
(1)求曲线
的方程,并说明曲线
是什么曲线;
(2)若
,求△
的面积;
(3)证明:△
为直角三角形.

















(1)求曲线


(2)若


(3)证明:△

已知点
是椭圆
的一个焦点,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于不同的
两点,且
(
为坐标原点),求直线
斜率的取值范围.




(Ⅰ)求椭圆

(Ⅱ)若直线






已知圆C:
和点
,P是圆上一点,线段BP的垂直平分线交CP于M点,则M点的轨迹方程为______ ;若直线l与M点的轨迹相交,且相交弦的中点为
,则直线l的方程是______ .



已知圆
的方程为
,若抛物线
过点
,且以圆0的切线为准线,
为抛物线的焦点,点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作直线
交曲线
与
两点,
关于
轴对称,请问:直线
是否过
轴上的定点,如果不过请说明理由,如果过定点,请求出定点
的坐标







(1)求曲线

(2)过点









已知圆
的圆心为
,圆
:
的圆心为
,一动圆与圆
内切,与圆
外切.
(Ⅰ)求动圆圆心
的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点
,使得
为钝角?若存在,求出点
横坐标的取值范围;若不存在,说明理由.







(Ⅰ)求动圆圆心

(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点



(本小题满分14分)在平面直角坐标系
中,已知动点
到两个定点
,
的距离的和为定值
.
(1)求点
运动所成轨迹
的方程;
(2)设
为坐标原点,若点
在轨迹
上,点
在直线
上,且
,试判断直线
与圆
的位置关系,并证明你的结论.





(1)求点


(2)设








P为圆A:
上的动点,点
.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)当点P在第一象限,且
时,求点M的坐标.


(Ⅰ)求曲线Γ的方程;
(Ⅱ)当点P在第一象限,且

已知圆







(1)求动点


(2)过点









已知椭圆
:
(
)过点
,其左、右焦点分别为
,且
.
(1)求椭圆
的方程;
(2)若
是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由.






(1)求椭圆

(2)若




