刷题首页
题库
高中数学
题干
已知圆
的方程为
,若抛物线
过点
,且以圆0的切线为准线,
为抛物线的焦点,点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作直线
交曲线
与
两点,
关于
轴对称,请问:直线
是否过
轴上的定点,如果不过请说明理由,如果过定点,请求出定点
的坐标
上一题
下一题
0.99难度 解答题 更新时间:2020-03-03 12:17:31
答案(点此获取答案解析)
同类题1
已知圆
,点
,点
在圆
上运动,
的垂直平分线交
于点
.
(1)求动点
的轨迹
方程;
(2)过点
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,请求出点
的坐标;若不存在,请说明理由.
同类题2
已知圆
的圆心为
,圆
:
的圆心为
,一动圆与圆
内切,与圆
外切.
(Ⅰ)求动圆圆心
的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点
,使得
为钝角?若存在,求出点
横坐标的取值范围;若不存在,说明理由.
同类题3
已知点
,
是圆
上的一个动点,
为圆心,线段
的垂直平分线与直线
的交点为
.
(1)求点
的轨迹
的方程;
(2)设
与
轴的正半轴交于点
,直线
与
交于
两点(
不经过
点),且
,
证明:直线
经过定点,并写出该定点的坐标.
同类题4
已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是( )
A.
(x≠0)
B.
(x≠0)
C.
(x≠0)
D.
(x≠0)
同类题5
已知点
A
(2,0),
.
P
为
上的动点,线段
BP
上的点
M
满足|
MP
|=|
MA
|.
(Ⅰ)求点
M
的轨迹
C
的方程;
(Ⅱ)过点
B
(-2,0)的直线
与轨迹
C
交于
S
、
T
两点,且
,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
利用抛物线定义求动点轨迹