- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆定义及辨析
- + 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系中,已知椭圆
经过点
,且其左右焦点的坐标分别是
,
.
(1)求椭圆
的离心率及标准方程;
(2)设
为动点,其中
,直线
经过点
且与椭圆
相交于
,
两点,若
为
的中点,是否存在定点
,使
恒成立?若存在,求点
的坐标;若不存在,说明理由




(1)求椭圆

(2)设












已知圆
的圆心为
,点
是圆
上的动点,点
,线段
的垂直平分线交
于
点.
(I)求点
的轨迹
的方程;
(Ⅱ)过点
作斜率不为0的直线
与(I)中的轨迹
交于
,
两点,点
关于
轴的对称点为
,连接
交
轴于点
,求
.








(I)求点


(Ⅱ)过点












已知圆
:
与定点
,
为圆
上的动点,点
在线段
上,且满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设曲线
与
轴正半轴交点为
,不经过点
的直线
与曲线
相交于不同两点
,
,若
.证明:直线
过定点.








(Ⅰ)求点


(Ⅱ)设曲线










已知
为坐标原点,点
,
,
,动点
满足
,点
为线段
的中点,抛物线
:
上点
的纵坐标为
,
.
(1)求动点
的轨迹曲线
的标准方程及抛物线
的标准方程;
(2)若抛物线
的准线上一点
满足
,试判断
是否为定值,若是,求这个定值;若不是,请说明理由.













(1)求动点



(2)若抛物线




如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角.

(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.









(1)求曲线


(2)过




椭圆
的两个焦点分别为
、
,点P在椭圆C上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线
过圆
的圆心M交椭圆于A,B两点,且M是AB的中点,求直线
的方程.







(1)求椭圆C的方程;
(2)若直线



已知点A(2,0),
.P为
上的动点,线段BP上的点M满足|MP|=|MA|.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点B(-2,0)的直线
与轨迹C交于S、T两点,且
,求直线
的方程.



(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点B(-2,0)的直线



已知圆
,定点
为圆上一动点,线段
的垂直平分线交线段
于点
,设点
的轨迹为曲线
;
(Ⅰ)求曲线
的方程;
(Ⅱ)若经过
的直线
交曲线于不同的两点
,(点
在点
,
之间),且满足
,求直线
的方程.







(Ⅰ)求曲线

(Ⅱ)若经过







